Representing information with sequences of symbols, is necessary for storing, exchanging and processing information. Information in computers must be represented in a form convenient for processing.
Representation
Key Words
Bit (b)
The smallest unit of data. 0 or 1 .
Nibble (N)
4 bits
Byte (B)
Kilobyte (KB)
Megabyte (MB)
Gigabyte (GB)
Terabyte (TB)
Petabyte (PB)

Binary number

Base 2 number system
data

Denary (also known as decimal)

Multiplier (also known as place

8 bits (note the difference between $b$ and $B$ )
1000 bytes. Note KB is different from Kb.
1 MB is equal to 1000 KB
1 GB is equal to 1000 MB
1 TB is equal to 1000 GB
1 PB is equal to 1000 TB
A number system that contains two symbols, 0
and 1. Also known as base 2
A number system where there are only 2 digits to select from.

Units of information. In computing there can be different data types, including integers, characters and Boolean. Data is often acted on by instructions.

The number system you use. It contains 10 unique digits 0 to 9 . Also known as decimal or base 10

The value of the place, or position, of a digit in a number

Humans have invented lots of different ways to code information using different sounds, symbols or even lights!

Computers represent all data, including numbers, letters, symbols, images, videos and sounds using binary numbers. All binary numbers are made up of the digits ) and 1.

Os and 1 s are called binary digits, or bits. All characters are represented using sequences of bits.
Computers only use the two symbols 0 and 1 because all computers are built out of electrical switched which can only be on (1) or off (0).

Binary digits are like letters; they are the symbols that computers 'write' with.

Multipliers or weights are the amount each digit in a sequence is worth e.g the number 30 contains three 10 s and zero 1 s .10 and 1 are the multipliers or weights. Binary numbers use different multipliers or weights

| Multipliers | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Example <br> binary | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |

To convert from binary to decimal (also known as denary) multiply each binary digit with its multiplier, then add up the products to work out the decimal number. For example in the binary number above 1 x $16=164 \times 1=41 \times 2=2$ and $1 \times 1=1$ and $16+4+2+1=23$

To convert from decimal to binary go through the multipliers from left to right. If a multiplier needs to be included in the sum, set the corresponding binary digits to 1 and proceed with the number that remains.

